skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Itskov, Vladimir"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 31, 2025
  2. Threshold-linear networks consist of simple units interacting in the presence of a threshold nonlinearity. Competitive threshold-linear networks have long been known to exhibit multistability, where the activity of the network settles into one of potentially many steady states. In this work, we find conditions that guarantee the absence of steady states, while maintaining bounded activity. These conditions lead us to define a combinatorial family of competitive threshold-linear networks, parametrized by a simple directed graph. By exploring this family, we discover that threshold-linear networks are capable of displaying a surprisingly rich variety of nonlinear dynamics, including limit cycles, quasi-periodic attractors, and chaos. In particular, several types of nonlinear behaviors can co-exist in the same network. Our mathematical results also enable us to engineer networks with multiple dynamic patterns. Taken together, these theoretical and computational findings suggest that threshold-linear networks may be a valuable tool for understanding the relationship between network connectivity and emergent dynamics. 
    more » « less
  3. Abstract We consider a common measurement paradigm, where an unknown subset of an affine space is measured by unknown continuous quasi-convex functions. Given the measurement data, can one determine the dimension of this space? In this paper, we develop a method for inferring the intrinsic dimension of the data from measurements by quasi-convex functions, under natural assumptions. The dimension inference problem depends only on discrete data of the ordering of the measured points of space, induced by the sensor functions. We construct a filtration of Dowker complexes, associated to measurements by quasi-convex functions. Topological features of these complexes are then used to infer the intrinsic dimension. We prove convergence theorems that guarantee obtaining the correct intrinsic dimension in the limit of large data, under natural assumptions. We also illustrate the usability of this method in simulations. 
    more » « less